Lesson: Fizz Frenzy: Mentos and Diet Coke	Name:
Teacher:	Date:
Lesson Focus: Understanding gas release, physical Mentos and Diet Coke experiment. Part A: Predict & Hypothesize 1. Predict what will happen when Mentos are	
2. Why do you think the soda erupts so quickly?	
Part B: Observation Watch the Mentos and Diet Coke experiment and 1. How tall did the soda fountain reach?	answer:
2. How fast did the reaction occur after dropp	ping Mentos?
3. Describe the foam that formed (small bubb	les, large bubbles, or a mix):
Part C: Understanding Science 1. What gas is released from Diet Coke when	Mentos are added?

2. What role do Mentos play in this reaction?
3. How does the surface area of Mentos affect the reaction?
4. Why is this a physical reaction and not a chemical reaction?
5. What might happen if warm soda were used instead of cold soda?
Part D: Real-World Connections 1. Can you think of any everyday examples where gas is released from liquids?
2. How could understanding surface area and gas release help engineers or scientists in real life?

Part C: Understanding the Science

1. What gas is released from Diet Coke when Mentos are added?

Answer: Carbon dioxide (CO_2) .

Explanation: Diet Coke contains CO₂ gas dissolved under pressure. When Mentos are added, the CO₂ escapes rapidly from the liquid, forming bubbles and foam.

2. What role do Mentos play in this reaction?

Answer: Mentos act as nucleation sites for CO₂ bubbles to form quickly.

Explanation: The surface of Mentos is rough and full of tiny pits. These imperfections allow CO₂ bubbles to form rapidly, which leads to the explosive release of gas and the soda fountain effect.

3. How does the surface area of Mentos affect the reaction?

Answer: More surface area allows more CO₂ bubbles to form, causing a faster and bigger reaction. Explanation: The rough texture increases the number of nucleation sites, so gas escapes more quickly. A larger or more porous surface would produce an even more dramatic eruption.

4. Why is this a physical reaction and not a chemical reaction?

Answer: No new substances are created; CO₂ gas is simply released from the liquid. Explanation: In a chemical reaction, new substances with different chemical properties are formed. Here, the soda remains chemically the same; only the physical state of the CO₂ changes from dissolved to gas.

5. What might happen if warm soda were used instead of cold soda?

Answer: The reaction would be stronger and faster.

Explanation: Warm liquids allow gases to escape more easily because the molecules are moving faster. CO₂ is less soluble in warm soda, so more gas comes out quickly, creating a higher fountain.